Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 176: 107974, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37245445

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are drinking water contaminants. Tools to assess the potential body burden associated with drinking PFAS-contaminated water may be helpful for public health assessment of exposed communities. METHODS: We implemented a suite of one-compartment toxicokinetic models using extensively calibrated toxicokinetic parameters (half-life and volume of distribution). We implemented the models both in the R programming language for research purposes, and as a web estimator for the general public (built in typescript.js). These models simulate exposure to PFAS water concentrations for individuals with varying characteristics such as age, sex, weight, and breastfeeding history. The models account for variability and uncertainty in parameter inputs to produce Monte Carlo-based estimates of serum concentration. For children, the models additionally account for gestational exposure, lactational exposure, and potential exposure through formula feeding. For adults who have borne children, the models account for clearance through birth and breastfeeding. We ran simulations of individuals with known PFAS water and serum concentrations to evaluate the model. We then compared the predicted serum PFAS concentrations to measured data. RESULTS: The models accurately estimate individual-level serum levels for each PFAS for most adults within ½ order of magnitude. We found that the models somewhat overestimated serum concentrations for children in the tested locations, and that these overestimates are generally within an order of magnitude. DISCUSSION: This paper presents scientifically robust models that allow users to estimate serum PFAS concentrations based on known PFAS water concentrations and physiologic information. However, accuracy in historical water concentration inputs, exposure from non-drinking water sources, and life-history characteristics of individuals present a complex problem for individual estimation. Additional refinements to the model suite to improve the prediction of individual results may consist of including duration of exposure and additional life-history characteristics.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Adulto , Criança , Feminino , Humanos , Água Potável/análise , Exposição Ambiental , Caprilatos , Poluentes Químicos da Água/análise
2.
Environ Health Perspect ; 130(12): 127001, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36454223

RESUMO

BACKGROUND: Setting health-protective standards for poly- and perfluoroalkyl substances (PFAS) exposure requires estimates of their population toxicokinetics, but existing studies have reported widely varying PFAS half-lives (T½) and volumes of distribution (Vd). OBJECTIVES: We combined data from multiple studies to develop harmonized estimates of T½ and Vd, along with their interindividual variability, for four PFAS commonly found in drinking water: perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). METHODS: We identified published data on PFAS concentrations in human serum with corresponding drinking water measurements, separated into training and testing data sets. We fit training data sets to a one-compartment model incorporating interindividual variability, time-dependent drinking water concentrations, and background exposures. Use of a hierarchical Bayesian approach allowed us to incorporate informative priors at the population level, as well as at the study level. We compared posterior predictions to testing data sets to evaluate model performance. RESULTS: Posterior median (95% CI) estimates of T½ (in years) for the population geometric mean were 3.14 (2.69, 3.73) for PFOA, 3.36 (2.52, 4.42) for PFOS, 2.35 (1.65, 3.16) for PFNA, and 8.30 (5.38, 13.5) for PFHxS, all of which were within the range of previously published values. The extensive individual-level data for PFOA allowed accurate estimation of population variability, with a population geometric standard deviation of 1.57 (95% CI: 1.42, 1.73); data from other PFAS were also consistent with this degree of population variability. Vd estimates ranged from 0.19 to 0.43L/kg across the four PFAS, which tended to be slightly higher than previously published estimates. DISCUSSION: These results have direct application in both risk assessment (quantitative interspecies extrapolation and uncertainty factors for interindividual variability) and risk communication (interpretation of monitoring data). In addition, this study provides a rigorous methodology for further refinement with additional data, as well as application to other PFAS. https://doi.org/10.1289/EHP10103.


Assuntos
Água Potável , Fluorocarbonos , Humanos , Fluorocarbonos/toxicidade , Teorema de Bayes , Toxicocinética , Alcanossulfonatos
3.
Lancet Planet Health ; 5(6): e338-e346, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34022145

RESUMO

BACKGROUND: Extreme heat exposure can lead to premature death. Climate change is expected to increase the frequency, intensity, and duration of extreme heat events, resulting in many additional heat-related deaths globally, as well as changing the nature of extreme cold events. At the same time, vulnerability to extreme heat has decreased over time, probably due to a combination of physiological, behavioural, infrastructural, and technological adaptations. We aimed to account for these changes in vulnerability and avoid overstated projections for temperature-related mortality. We used the historical observed decrease in vulnerability to improve future mortality estimates. METHODS: We used historical mortality and temperature data from 208 US cities to quantify how observed changes in vulnerability from 1973 to 2013 affected projections of temperature-related mortality under various climate scenarios. We used geographically structured meta-regression to characterise the relationship between temperature and mortality for these urban populations over the specified time period. We then used the fitted relationships to project mortality under future climate conditions. FINDINGS: Between Oct 26, 2018, and March 9, 2020, we established that differences in vulnerability to temperature were geographically structured. Vulnerability decreased over time in most areas. US mortalities projected from a 2°C increase in mean temperature decreased by more than 97% when using 2003-13 data compared with 1973-82 data. However, these benefits declined with increasing temperatures, with a 6°C increase showing only an 84% decline in projected mortality based on 2003-13 data. INTERPRETATION: Even after accounting for adaptation, the projected effects of climate change on premature mortality constitute a substantial public health risk. Our work suggests large increases in temperature will require additional mitigation to avoid excess mortality from heat events, even in areas with high air conditioning coverage in place. FUNDING: The US Environmental Protection Agency and Abt Associates.


Assuntos
Mudança Climática , Calor Extremo , Cidades , Temperatura Alta , Humanos , Temperatura , Estados Unidos/epidemiologia
4.
Environ Sci Technol ; 54(15): 9474-9482, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32638591

RESUMO

In recent years, environmental lead (Pb) exposure through drinking water has resulted in community public health concerns. To understand potential impacts on blood Pb levels (BLLs) from drinking water Pb reduction actions (i.e., combinations of lead service lines [LSL] and corrosion control treatment [CCT] scenarios), EPA's Stochastic Human Exposure and Dose Simulation (SHEDS)-Multimedia/Integrated Exposure Uptake and Biokinetic (IEUBK) model was applied for U.S. children aged 0 to <6 years. The results utilizing a large drinking water sequential sampling data set from 15 cities to estimate model input concentration distributions demonstrated lowest predicted BLLs for the "no LSLs" with "combined CCT" scenario and highest predicted BLLs for the "yes LSLs" and "no CCT" scenario. Modeled contribution to BLLs from ingestion of residential drinking water ranged from ∼10 to 80%, with the highest estimated for formula-fed infants (age 0 to <1 year). Further analysis using a "bounding" data set spanning a range of realistic water Pb concentrations and variabilities showed BLL predictions consistent with the sequential sampling-derived inputs. Our study illustrates (1) effectiveness of LSL replacement coupled with CCT for reducing Pb in drinking water and children's BLLs, and (2) in some age groups, under realistic local and residential water use conditions, drinking water can be the dominant exposure pathway.


Assuntos
Água Potável , Poluentes Químicos da Água , Criança , Corrosão , Exposição Ambiental/análise , Humanos , Lactente , Chumbo/análise , Poluentes Químicos da Água/análise , Abastecimento de Água
5.
Environ Pollut ; 243(Pt A): 743-751, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30228066

RESUMO

The explosion of the Deepwater Horizon (DWH) oil drilling rig resulted in the release of crude oil into the Gulf of Mexico. This event coincided with the spawning season of the Eastern oyster, Crassostrea virginica. Although oil bound to sediments constitutes an important source of polycyclic aromatic hydrocarbon (PAH) exposure to benthic organisms, toxicity of sediment-associated DWH oil has not been investigated in any bivalve species. Here, we evaluated the sublethal effects of acute exposure of gametes, embryos and veliger larvae of the Eastern oyster to different concentrations of unfiltered elutriates of sediment contaminated with DWH oil. Our results suggest that gametes, embryos and veliger larvae are harmed by exposure to unfiltered elutriates of contaminated sediment. Effective concentrations for fertilization inhibition were 40.6 µg tPAH50 L-1 and 173.2 µg tPAH50 L-1 for EC201h and EC501h values, respectively. Embryo exposure resulted in dose-dependent abnormalities (EC20 and EC50 values were 77.7 µg tPAH50 L-1 and 151 µg tPAH50 L-1, respectively) and reduction in shell growth (EC2024h value of 1180 µg tPAH50 L-1). Development and growth of veliger larvae were less sensitive to sediment-associated PAHs compared to embryos. Fertilization success and abnormality of larvae exposed as embryos were the most sensitive endpoints for assessing the toxicity of oil-contaminated sediment. Bulk of measured polycyclic aromatic hydrocarbons were sediment-bound and caused toxic effects at lower tPAH50 concentrations than high energy water accommodated fractions (HEWAF) preparations from the same DWH oil. This study suggests risk assessments would benefit from further study of suspended contaminated sediment.


Assuntos
Crassostrea/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Sedimentos Geológicos/química , Larva/crescimento & desenvolvimento , Poluição por Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Exoesqueleto/crescimento & desenvolvimento , Animais , Desastres , Embrião não Mamífero/efeitos dos fármacos , Golfo do México , Larva/efeitos dos fármacos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Poluentes Químicos da Água/análise
6.
Environ Toxicol Chem ; 37(6): 1679-1687, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29473712

RESUMO

Millions of barrels of oil were released into the Gulf of Mexico following the 2010 explosion of the Deepwater Horizon oil rig. Polycyclic aromatic hydrocarbons (PAHs) are toxic components of crude oil, which may become more toxic in the presence of ultraviolet (UV) radiation, a phenomenon known as photo-induced toxicity. The Deepwater Horizon spill impacted offshore and estuarine sites, where biota may be co-exposed to UV and PAHs. Penetration of UV into the water column is affected by site-specific factors. Therefore, measurements and/or estimations of UV are necessary when one is assessing the risk to biota posed by photo-induced toxicity. We describe how estimates of incident UV were determined for the area impacted by the Deepwater Horizon oil spill, using monitoring data from radiometers near the spill, in conjunction with reference spectra characterizing the composition of solar radiation. Furthermore, we provide UV attenuation coefficients for both near- and offshore sites in the Gulf of Mexico. These estimates are specific to the time and location of the spill, and fall within the range of intensities utilized during photo-induced toxicity tests performed in support of the Deepwater Horizon Natural Resource Damage Assessment (NRDA). These data further validate the methodologies and findings of phototoxicity tests included in the Deepwater Horizon NRDA, while underscoring the importance of considering UV exposure when assessing possible risks following oil spills. Environ Toxicol Chem 2018;37:1679-1687. © 2018 SETAC.


Assuntos
Poluição por Petróleo , Raios Ultravioleta , Monitoramento Ambiental/métodos , Golfo do México , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/toxicidade
7.
Ecotoxicology ; 27(4): 440-447, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29464533

RESUMO

The 2010 explosion of the Deepwater Horizon (DWH) oil rig led to the release of millions of barrels of oil in the Gulf of Mexico. Oil in aquatic ecosystems exerts toxicity through multiple mechanisms, including photo-induced toxicity following co-exposure with UV radiation. The timing and location of the spill coincided with both fiddler crab reproduction and peak yearly UV intensities, putting early life stage fiddler crabs at risk of injury due to photo-induced toxicity. The present study assessed sensitivity of fiddler crab larvae to photo-induced toxicity during co-exposure to a range of environmentally relevant dilutions of high-energy water accommodated fractions of DWH oil, and either <10, 50, or 100% ambient sunlight, achieved with filters that allowed for variable UV penetration. Solar exposures (duration: 7-h per day) were conducted for two consecutive days, with a dark recovery period (duration: 17-h) in between. Survival was significantly decreased in treatments the presence of >10% UV and relatively low concentrations of oil. Results of the present study indicate fiddler crab larvae are sensitive to photo-induced toxicity in the presence of DWH oil. These results are of concern, as fiddler crabs play an important role as ecosystem engineers, modulating sediment biogeochemical processes via burrowing action. Furthermore, they occupy an important place in the food web in the Gulf of Mexico.


Assuntos
Braquiúros/efeitos dos fármacos , Braquiúros/efeitos da radiação , Petróleo/toxicidade , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Braquiúros/crescimento & desenvolvimento , Golfo do México , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Poluição por Petróleo/efeitos adversos
8.
Environ Toxicol Chem ; 36(6): 1460-1472, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28328044

RESUMO

In response to the Deepwater Horizon oil spill, the Natural Resource Trustees implemented a toxicity testing program that included 4 different Deepwater Horizon oils that ranged from fresh to weathered, and 3 different oil-in-water preparation methods (including one that used the chemical dispersant Corexit 9500) to prepare a total of 12 chemically unique water accommodated fractions (WAFs). We determined how the different WAF preparation methods, WAF concentrations, and oil types influenced the chemical composition and concentration of polycyclic aromatic hydrocarbons (PAHs) in the dissolved and particulate phases over time periods used in standard toxicity tests. In WAFs prepared with the same starting oil and oil-to-water ratio, the composition and concentration of the dissolved fractions were similar across all preparation methods. However, these similarities diverged when dilutions of the 3 WAF methods were compared. In WAFs containing oil droplets, we found that the dissolved phase was a small fraction of the total PAH concentration for the high-concentration stock WAFs; however, the dissolved phase became the dominant fraction when it was diluted to lower concentrations. Furthermore, decreases in concentration over time were mainly related to surfacing of the larger oil droplets. The initial mean diameters of the droplets were approximately 5 to 10 µm, with a few droplets larger than 30 µm. After 96 h, the mean droplet size decreased to 3 to 5 µm, with generally all droplets larger than 10 µm resurfacing. These data provide a detailed assessment of the concentration and form (dissolved vs particulate) of the PAHs in our WAF exposures, measurements that are important for determining the effects of oil on aquatic species. Environ Toxicol Chem 2017;36:1460-1472. © 2017 SETAC.


Assuntos
Lipídeos/química , Poluição por Petróleo , Petróleo/análise , Poluentes Químicos da Água/análise , Água/química , Animais , Cromatografia Gasosa-Espectrometria de Massas , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Tensoativos/química , Testes de Toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
9.
Environ Toxicol Chem ; 36(4): 1067-1076, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27676139

RESUMO

The Deepwater Horizon oil spill released millions of barrels of crude oil into the northern Gulf of Mexico, much of which remains associated with sediments and can have continuing impacts on biota. Juvenile southern flounder (Paralichthys lethostigma) were exposed for 28 d in the laboratory under controlled conditions to reference and Deepwater Horizon oil-contaminated sediments collected from coastal Louisiana to assess the impacts on an ecologically and commercially important benthic fish. The measured polycyclic aromatic hydrocarbon (PAH) concentrations in the sediments ranged from 0.25 mg/kg to 3940 mg/kg suite of 50 PAH analytes (tPAH50). Mortality increased with both concentration and duration of exposure. Exposed flounder length and weight was lower compared to controls after 28 d of exposure to the sediments with the highest PAH concentration, but condition factor was significantly higher in these fish compared with all other treatments. Histopathological analyses showed increased occurrence of gill abnormalities, including telangiectasis, epithelial proliferation, and fused lamellae in flounder exposed to sediments with the highest tPAH50 concentrations. In addition, hepatic vascular congestion and macrovesicular vacuolation were observed in flounder exposed to the more contaminated sediments. These data suggest that chronic exposure to field collected oil-contaminated sediments results in a variety of sublethal impacts to a benthic fish, with implications for long-term recovery from oil spills. Environ Toxicol Chem 2017;36:1067-1076. © 2016 SETAC.


Assuntos
Linguado/crescimento & desenvolvimento , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Brânquias/química , Brânquias/efeitos dos fármacos , Brânquias/crescimento & desenvolvimento , Golfo do México , Louisiana , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...